Modifications at the C-terminus to improve pyrrole-imidazole polyamide activity in cell culture.

نویسندگان

  • Claire S Jacobs
  • Peter B Dervan
چکیده

Pyrrole-imidazole (Py-Im) hairpin polyamides are a class of small molecule DNA minor groove binding compounds that have been shown to modulate endogenous gene expression in cell culture. Gene regulation by polyamides requires efficient cellular uptake and nuclear localization properties for candidate compounds. To further optimize Py-Im polyamides for enhanced potency in cell culture, a focused library of polyamides possessing various modifications at the C-terminus was synthesized and tested. Comparison of polyamide biological activity in two cell lines revealed tolerance for structural modifications and agreement in activity trends between cell lines. The use of an oxime linkage between the polyamide and an aromatic functionality on the C-terminus resulted in a approximately 20-fold increase in the potency of polyamides targeted to the androgen response element (ARE) in LNCaP cells by measuring AR-activated PSA expression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nuclear localization of pyrrole-imidazole polyamide-fluorescein conjugates in cell culture.

A series of hairpin pyrrole-imidazole polyamide-fluorescein conjugates were synthesized and assayed for cellular localization. Thirteen cell lines, representing 11 human cancers, one human transformed kidney cell line, and one murine leukemia cell line, were treated with 5 microM polyamide-fluorescein conjugates for 10-14 h, then imaged by confocal laser scanning microscopy. A conjugate contain...

متن کامل

In vivo imaging of pyrrole-imidazole polyamides with positron emission tomography.

The biodistribution profiles in mice of two pyrrole-imidazole polyamides were determined by PET. Pyrrole-imidazole polyamides are a class of small molecules that can be programmed to bind a broad repertoire of DNA sequences, disrupt transcription factor-DNA interfaces, and modulate gene expression pathways in cell culture experiments. The (18)F-radiolabeled polyamides were prepared by oxime lig...

متن کامل

Antitumor activity of a pyrrole-imidazole polyamide.

Many cancer therapeutics target DNA and exert cytotoxicity through the induction of DNA damage and inhibition of transcription. We report that a DNA minor groove binding hairpin pyrrole-imidazole (Py-Im) polyamide interferes with RNA polymerase II (RNAP2) activity in cell culture. Polyamide treatment activates p53 signaling in LNCaP prostate cancer cells without detectable DNA damage. Genome-wi...

متن کامل

Orientation Preferences of Pyrrole-Imidazole Polyamides in the Minor Groove of DNA

In order to determine whether there is an orientation preference of pyrrole-imidazole (Py-Im) polyamide dimers with respect to the 5′-3′ direction of the backbone in the DNA helix, equilibrium association constants (Ka) were determined for a series of six-ring hairpin polyamides which differ with respect to substitution at the N and C termini. Affinity cleaving experiments using hairpin polyami...

متن کامل

Cyclic pyrrole-imidazole polyamides targeted to the androgen response element.

Hairpin pyrrole-imidazole (Py-Im) polyamides are a class of cell-permeable DNA-binding small molecules that can disrupt transcription factor-DNA binding and regulate endogenous gene expression. The covalent linkage of antiparallel Py-Im ring pairs with an gamma-amino acid turn unit affords the classical hairpin Py-Im polyamide structure. Closing the hairpin with a second turn unit yields a cycl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of medicinal chemistry

دوره 52 23  شماره 

صفحات  -

تاریخ انتشار 2009